GRENE-TEA Model Intercomparison Project (GTMIP) Stage 1: Experiment protocol

Ver.1.7, 26 February, 2015

1. Introduction

Overall target of the activity

The goals of the modeling group in the terrestrial ecosystem research project of the GRENE Arctic Climate Change Research Project (GRENE-TEA) are to a) feed to the coupled global climate model (CGCM) research project for the possible improvement of the physical and ecological processes for the Arctic terrestrial modeling (excl. glaciers and ice sheets) in the extant terrestrial schemes in the CGCMs , and b) lay the foundations of the future-generation Arctic terrestrial model development. To achieve these goals the GTM (modeling group in GRENE-TEA) group is to conduct a model intercomparison project (GTMIP) among the participating models, in which we will utilize the GRENE-TEA site observations data (stage 1) and CGCMs outputs (stage 2) for driving and validating the models. The GTMIP is designated to 1) enhance communications and understanding of the "mind and hands" between the modeling researchers and field scientists, 2) assess the uncertainty and variations stemmed from the extant model implementation/designation, and the variability due to climatic and historical conditions among the Arctic sites, and 3) feed such information and evaluations to the future-generation Arctic terrestrial model development.

The GTMIP consists of two stages: one dimensional, historical GRENE-TEA site evaluations (stage 1) and circumpolar evaluations using projected climate change data from GCM outputs (stage 2). This protocol is for the Stage 1 of the project, which evaluates the TPMs for the physical and the biogeochemical processes by site simulations for recent three decades, driven and validated by the GRENE-TEA site observations data that is compiled through a tight collaboration between field and modelling group of GRENE-TEA.

Background

The pan-Arctic ecosystem is characterized by low mean temperature, snow cover, seasonal frozen ground and permafrost with a large carbon reservoir, covered by various biomes (plant types) ranging from deciduous and evergreen forests to tundra. To investigate the climate change impact in this region, a number of studies using observed data analysis as well as numerical modelling studies were carried out (e.g. Zhang et al., 2005; Brown and Robinson, 2011; Brutel-Vuilmet et al., 2013; Koven et al., 2011, 2013; Slater and Lawrence, 2013). Various schemes for numerical modelling have been developed to treat physical and biogeochemical processes on and below the land surface, and interactions with the overlying atmosphere as a component of the atmosphere ocean coupled global climate models (AOGCMs), or Earth System models (ESMs). Among those, snowpack,

ground freezing/thawing and carbon exchange processes are the most important processes in the terrestrial process model (TPM) applied in the pan-Arctic region.

Since the 1990s, a number of model intercomparison projects (MIPs) have been carried out, focusing on the performance of the TPMs, AOGCMs and ESMs; such as PILPS (Project for Intercomparison of Land-Surface Parameterization Schemes; Henderson-Sellers, 1993), SnowMIP (Snow Models Intercomparison Project; Etchevers et al. 2004; Essery et al. 2009), Potsdam NPP MIP (Potsdam Net Primary Production Model Intercomparison Project; Cramer et al., 1999), C4MIP (Coupled Climate–Carbon Cycle Model Intercomparison Project; Friedlingstein et al. 2006), CMIP5 (Coupled Model Intercomparison Project; Taylor et al. 2012), and MsTMIP (Multi-scale synthesis and Terrestrial Model Intercomparison Project; Huntzinger et al., 2013) among others.

Based on the outcomes from these MIPs, the TPMs have improved their performances. However, as past MIPs are carried out for the global scale or in the subarctic region using the gridded outputs from the models, an intercomparison dedicated to Arctic region processes that include both physical and biogeochemical aspects for site-level are still limited (e.g. Ekisi et al., 2014; Rawlins et al., 2015). A mission of the modelling group in the terrestrial research project of the GRENE Arctic Climate Change Research Project (GRENE-TEA) is to a) feed to the AOGCM research community the possible improvements regarding the physical and biogeochemical processes for the Arctic terrestrial modelling (excl. glaciers and ice sheets) in the extant terrestrial schemes in the AOGCMs, and b) lay the foundations of the future-generation Arctic terrestrial model development. This model intercomparison project (GTMIP) is planned and conducted, as an activity to achieve these goals. It is also designated to enhance communications and understanding of the "mind and hands" between the modelling and empirical scientists, as well as to assess the uncertainty and variations stemmed from the model implementation/designation, and the variability due to climatic and historical conditions among the pan-Arctic sites.

2. Experiment design

2.1 Targeted processes

The following five categories (from "a)" to "e)" below) were selected as the key processes to assess the performance of the extant TPMs in pan-Arctic region, evaluate the variations among the models and the mechanisms behind their strength and weakness, and draw information and guidance to improve for the next generation of TPMs. The five categories consist a) exchange of energy and water between atmosphere and land, b) snowpack, c) phenology, d) ground freezing/ thawing and active layer, and e) carbon budget.

The scientific questions at the Stage 1 are: How well do the TPMs reproduce target metrics (shown in B in Table 1, but not limited to) in terms of agreement with the observations? How do the reproductions vary among the models? If the reproductions are good or poor in some models, which

processes in TPMs are responsible and why?

J 1 0	
A: Key processes categories	B: Target processes and metrics
Energy and water budget	Partition of energy and water at surface, canopy, and
	subsurface, albedo
Snowpack (snow cover ratio, snow	Snow water equivalent, snow density, snow cover duration
depth/snow water equivalent)	(length and dates)
Phenology	Annual maximum leaf area index, growing season (length
	and dates)
Ground freezing/thawing, active	Active layer thickness (in permafrost) or maximum
layer	seasonal frozen depth, trumpet curve, ice content ratio
Carbon budget	Net primary production, heterotrophic and autotrophic
	respiration, net ecosystem production, stored carbon mass
	in different pools

Table1: The key processes categories and target processes

2.2. Spatial domain

The stage 1 of GTMIP will use the forcing data obtained at the GRENE-TEA observation sites (Fig.1), provided and compiled by the field scientists in charge of the sites. Besides the direct comparison of the model outputs to evaluate the inter-sites and inter-model variations, it is aimed to give a good opportunity for the modelers and field scientists working together to substantiate the mutual understanding (Field-Model collaboration).

Fig.1: Location map of GRENE-TEA sites

We will conduct the experiment at six pan-Arctic observation sites listed below (Table 2) owing to the availability of data to drive and validate the model, and of parameters and supporting information to specify the site. The location, dominant vegetation type, soil, climate, fraction of photosynthetically active radiation (fPAR), leaf area index (LAI), data available for model validation, and reference for observation data at target sites are shown in Table 2.

Table 2: The information of sites

(a): Fairbanks	(FB: Poker	Flat Research	Range), Alaska,	USA
----------------	------------	---------------	-----------------	-----

Location	65°07'24" N, 147°29'15." W		
Altitude	210 m		
Dominant vegetation type	Black spruce forest		
Soil	0-14cm layer: moss		
	14-25cm: undecomposed organic layer		
	25-39cm: decomposed organic layer		
	39cm- : silt soil		
	Active layer thickness: 43cm in 2013		
Climate	Mean annual air temperature: -2.8 °C (2011)		
	Annual precipitation: 312 mm (2011)		
fPAR and LAI ¹⁾	fPAR: 0.03 (Jan), 0.05 (Feb), 0.05 (Mar), 0.13 (Apr), 0.39 (May),		
	0.69 (Jun), 0.69 (Jul), 0.69 (Aug), 0.43 (Sep), 0.23 (Oct), 0.06 (Nov),		
	0.00 (Dec)		
	LAI: 0.05 (Jan), 0.09 (Feb), 0.09 (Mar), 0.23 (Apr), 0.99 (May), 2.26		
	(Jun), 2.32 (Jul), 1.90 (Aug), 0.80 (Sep), 0.49 (Oct), 0.10 (Nov), 0.01		
	(Dec.)		
Data available for model	Snow depth, ground temperature (-0.05, -0.1, -0.2, -0.4, -1.0m), soil		
validation	moisture (-0.05, -0.1, -0.2, -0.4m), leaf area index, albedo, FPAR		
	(Fraction of photosynthetically active radiation), upward short and		
	long wave radiation, energy and carbon fluxes		
Reference	Nakai et al., 2013		

(b): Kevo (KV: Kevo Research Station), Finland

Location	69°45' 25"N, 27°00' 37"E	
Altitude	100m	
Dominant vegetation type	Pine forest	
Soil	0-20cm: humus soil	
	20-50cm: sandy silt	
Climate	Mean annual air temperature: -1.6 °C	
	Annual precipitation: 415 mm	
fPAR and LAI ¹⁾	fPAR: 0.03 (Jan), 0.06 (Feb), 0.08 (Mar), 0.11 (Apr), 0.51 (May),	
	0.56 (Jun), 0.69 (Jul), 0.76 (Aug), 0.68 (Sep), 0.45 (Oct), 0.10 (Nov),	
	0.02 (Dec)	
	LAI: 0.05 (Jan), 0.10 (Feb), 0.14 (Mar), 0.21 (Apr), 1.13 (May), 1.63	

	(Jun), 2.52 (Jul), 2.78 (Aug), 1.66 (Sep), 1.18 (Oct), 0.21 (Nov), 0.05
	(Dec.)
Data available for model	Snow depth, snow (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7m) and ground
validation	temperature (-0.1, -0.2, -0.3, -0.35m), soil moisture (-0.1, -0.2,
	-0.3m), albedo, upward short and long wave radiation
Reference	Sato et al., 2001

	~			a 11	D 111	D ·	T 1
((:):	: Tiksi	(TK).	Sakha	Republic	. Russian	Federation
· · ·			< / ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.0000000	,	

Location	71°35'21"N, 128°46'27"E
Altitude	40 m
Dominant vegetation type	Non-tussock sedge, dwarf-shrubs, and moss tundra
Soil	0-1cm: partially decomposed litter
	1-15cm: loam
	15-70cm: silt with gravel
	Active layer thickness: 70cm
Climate	Mean annual air temperature: -13.5 °C
	Annual precipitation: 331 mm
fPAR and LAI ¹⁾	fPAR: 0.00 (Jan), 0.00 (Feb), 0.00 (Mar), 0.00 (Apr), 0.03 (May),
	0.29 (Jun), 0.45 (Jul), 0.47 (Aug), 0.28 (Sep), 0.04 (Oct), 0.00 (Nov),
	0.00 (Dec)
	LAI: 0.00 (Jan), 0.00 (Feb), 0.00 (Mar), 0.00 (Apr), 0.05 (May), 0.52
	(Jun), 0.88 (Jul), 0.73 (Aug), 0.49 (Sep), 0.07 (Oct), 0.00 (Nov), 0.00
	(Dec.)
Data available for model	Snow depth, ground temperature (-0.1, -0.2, -0.3, -0.47, -1, -2, -3, -5,
validation	-10, -20, -30m), soil moisture (0, -0.05, -0.15, -0.3m), albedo,
	upward short and long wave radiation
Reference	Kodama et al., 2007; Watanabe et al., 2000

Location	62°15'18"N, 129°37'6"E
Altitude	220 m
Dominant vegetation type	Larch forest
Soil	0-20cm: organic layer
	Upper mineral layer: sandy loam
	Lower mineral layer: silty loam
	(More than 80% of root: within a soil depth of 20 cm)

	Active layer thickness: 1.2m	
Climate	Mean annual air temperature: -10.2 °C	
	Annual precipitation: 188 mm	
fPAR and LAI ¹⁾	fPAR: 0.00 (Jan), 0.00 (Feb), 0.00 (Mar), 0.05 (Apr), 0.28 (May),	
	0.46 (Jun), 0.42 (Jul), 0.21 (Aug), 0.03 (Sep), 0.00 (Oct), 0.00 (Nov),	
	0.02 (Dec) 0.00	
	LAI: 0.00 (Jan), 0.00 (Feb), 0.00 (Mar), 0.00 (Apr), 0.07 (May), 0.58	
	(Jun), 1.05 (Jul), 0.81 (Aug), 0.28 (Sep), 0.04 (Oct), 0.00 (Nov), 0.00	
	(Dec.)	
Data available for model	Snow depth, ground temperature (-0.1, -0.2, -0.4, -0.6, -0.8, -1.2),	
validation	soil moisture (-0.1, -02, -0.4, -0.6, -0.8m), albedo, FPAR, upward	
	short and long wave radiation, energy and carbon fluxes	
Reference	Ohta et al., 2001, 2008, 2014; Kotani et al., 2013; Lopez et al., 2007	

(e): Chokurdakh (CH: Kodack/Krybaya) , Sakha Republic, Russian Federation

Location	70°33'48"N, 148°15'51"E
Altitude	9 m
Dominant vegetation type	Tussock wetland/shrubs/sparse larch trees
Soil	Clay loam, silty clay loam
	Active layer thickness: 0.4-0.7m
Climate	Mean annual air temperature: -13.4 °C
	Annual precipitation: 196 mm
fPAR and LAI ¹⁾	fPAR: 0.00 (Jan), 0.00 (Feb), 0.00 (Mar), 0.00 (Apr), 0.00 (May),
	0.01 (Jun), 0.18 (Jul), 0.45 (Aug), 0.48 (Sep), 0.26 (Oct), 0.07 (Nov),
	0.02 (Dec)
	LAI: 0.00 (Jan), 0.00 (Feb), 0.00 (Mar), 0.00 (Apr), 0.02 (May), 0.32
	(Jun), 0.91 (Jul), 0.79 (Aug), 0.41 (Sep), 0.15 (Oct), 0.00 (Nov), 0.00
	(Dec.)
Data available for model	Ground temperature (-0.01, -0.05, -0.1, -0.2, -0.3, -0.4, -0.5, -0.75,
validation	-1.0, -1.5, -2.0, -2.5, -3.0, -4.0, -5.0, -5.5, -7.0, -10.0 m), soil
	moisture (-0.035, -0.145, -0.335, -0.535m), albedo, upward short and
	long wave radiation, energy and carbon fluxes
Reference	Iwahana et al., 2014

(f): Tura (TR), Russian Federation

Location	64°12'32"N, 100°27'49"E

Altitude	250 m
Dominant vegetation type	Larch forest
Soil	10-20cm organic layer
	Cryosol
	Active layer thickness: 1m
Climate	Mean annual air temperature: -8.9 °C
	Annual precipitation: 360 mm
fPAR and LAI ¹⁾	fPAR: 0.00 (Jan), 0.00 (Feb), 0.00 (Mar), 0.01 (Apr), 0.20 (May),
	0.48 (Jun), 0.52 (Jul), 0.49 (Aug), 0.29 (Sep), 0.10 (Oct), 0.00 (Nov),
	0.00 (Dec)
	LAI: 0.00 (Jan), 0.00 (Feb), 0.00 (Mar), 0.01 (Apr), 0.46 (May), 1.28
	(Jun), 1.43 (Jul), 1.17 (Aug), 0.48 (Sep), 0.17 (Oct), 0.00 (Nov), 0.00
	(Dec.)
Data available for model	Ground temperature (-0.05, -0.1, -0.2, -0.4, -0.5), soil moisture
validation	(-0.05, -0.1, -0.2, -0.4, -0.5), albedo, FPAR, upward short and long
	wave radiation, energy and carbon fluxes
Reference	Nakai et al., 2008

1) Average value extracted from 1km grid MODIS satellite from 2001 to 2011 (Sasai et al., 2011)

2.3. Temporal Domain

The target temporal coverage for stage 1 is from 1980 to 2013, providing at least 30 years of data to enable the climatological analysis. The target temporal coverage may be extended up to 50 years to enable the comparison with the tree-ring data taken at GRENE-TEA sites

2.4. Driving Data Sets

The target period of the stage 1 is set from 1980 to 2013, which can provide at least 30 years of data to enable climatological analyses. We provide the following driving data for the stage 1 experiment: surface air temperature, precipitation, specific humidity, air pressure, wind speed, incident short wave and long wave radiation.

For this stage (site simulations), forcing and validation data have been prepared, taking maximum advantage of the observation data taken at GRENE-TEA sites (Fairbanks (FB) in Alaska, Tiksi (TK), Yakutsk (YK), Chokurdakh (CH), and Tura (TR) in Russia, and Kevo (KV) in Finland; **Fig. 1**), to evaluate the inter-model and inter-site variations for 1980-2013. Backbone of the continuous forcing data (called "level 0" or L0; Saito et al., 2014a) was constructed from a reanalysis data to avoid limited coverage and/or missing or lack of the consistency inherent to observational data, with

bias-corrected with the monthly CRU (for temperature; Harris et al., 2014) and GPCP (for precipitation; Adler et al., 2003) datasets at the respective nearest grid to the sites. The ERA-interim reanalysis data (Dee et al., 2011) was chosen from four products (i.e. NCEP/NCAR, NCEP-DOE, JRA55, ERA-interim) because it showed the smallest bias relative to the monthly CRU and GPCP in terms of 2m air temperature and precipitation in the pan-Arctic region (north of 60 degree).

Then, assimilation of the observed data was applied to reflect the local characteristics to derive the primary driving data, "level 1" data (L1; Saito et al., 2014b), and, in addition, the level 1 hybrid data (L1H) by replaced by the observed data when available. The L1 dataset was provided for the four sites (FB, KV, TK and YK) due to availability of the observed data for validations. Further detail of method to create the L0 and L1 data, and their basic statistics, are described in Sueyoshi et al. (2015).

The 20-year detrended meteorological driving dataset was provided for spin up, especially for biogeochemical models to set up initial soil carbon conditions, without being affected by warming trend and/or ENSO (El Niño Southern Oscillation). This dataset is based on the L1 data for the period of 1980-1999 (Saito et al., 2015). The monthly value of fPAR and LAI dataset at GRENE-TEA sites, created based on MODIS satellite data (MOD15A2, MYD15A2), were also provided for such models that need these data for driving (Saito et al., 2014c).

The driving data sets are provided basically in the ASCII fixed length record files, and are available through Arctic Data Archive System (ADS; <u>https://ads.nipr.ac.jp/gtmip/gtmip.html</u>), along with the simulation protocol.

2.5 Parameters for boundary condition

The stage 1 consists of two sub stages: 1A and 1B. The stage 1A, aiming to evaluate the inter-model variations in baseline performance at each site, requests the participants to use the parameters in default settings for the provided boundary conditions such as land cover type. In contrast, the stage 1B allows tuning for best reproduction of the observed so that the variations and sensitivity in parameter values among sites can be evaluated.

2.6. Initial condition and model spin-ups

We set the date of initial condition on 1 September, 1979 so that a simulation can start with a no-snow condition. The initial data for the boundary condition of the model will be available, as most of station has the observation data for the soil temperature and soil moisture profiles. However, each model can use its own method for initialization.

The spin up process may also differ by models. However, we recommend to spin up until the steady state of main variables (see section 2.5) is achieved. For example, Takata (2002) defined the threshold of a steady state as

$$\frac{X_n - X_{n-1}}{X_n} < 10^{-2}$$
,

where X is a physical variable (e.g. fluxes, ground temperature, soil moisture, or ice content) in equation (1). Subscript n denotes an annual mean of the n-th year.

For biogeochemical cycle models, we recommend to spin up at least 2000 years using the detrended meteorological driving data (also provided through ADS) and pre-industrial atmospheric CO2 concentration (e.g. 280 ppmv for around 1750) until the soil carbon reaches equilibrium; then the atmospheric CO2 concentration should be increased to the current level (e.g. 340 ppmv) in 200 years or so (the period being dependent on the models). For the submission period (1979 to 2013), use of the historical atmospheric CO2 concentration is recommended for such models as to be driven by time-variant CO2 concentration.

2.7. Variables

We request the participants to submit us those variables listed in Table3 in the ASCII format with the CSV type files.

The variables to submit are categorized into the six groups: 0) model driving, 1) energy and water budget, 2) snow dynamics, 3) vegetation, 4) subsurface hydrological and thermal states, and 5) carbon budget. The priority for each variable, classed to three levels, was set according to the necessity and availability for evaluation of the model performance. In addition, participants are requested to inform the status of the variables in his/her/their model (i.e., model driving, prescribed parameter, prognostic, diagnostic, and not applicable) through the provided questionnaire to identify the characteristics of the model.

Although the temporal resolution of a variable should depend on a model, we request to submit the variables with the minimum temporal resolution available for the model. For the models that outputs daily output, the day time should be defined by the local time (FB: UTC-10, KV: UTC+2, TK: UTC+9, YK: UTC+9, CH: UTC+10, TR: UTC+7). Those models, which use the no-leap calendar (365 days for all years), is requested to drop the day of February 29th.

Table3: The lists of variables to submit

The status in this table is requested to put in the number of status (1: model driving, 2: prescribed parameter, 3: prognostic variable, 4: diagnostic variable, 5: not applicable) for each variable according to each model treatment. The time step in this table is requested to put the time step (e.g. 30 min., daily) of output from each model.

(a): Model driving

Variable	Priority	Definition	Units	Direction	status	Time
				(+)		step
Pr	1	Total precipitation	kg/m ² /s	Downward		
Psn	1	Snowfall	kg/m ² /s	Downward		
Tair	1	Air temperature at reference	K	-		
		height				
Psurf	1	Surface pressure	hPa	-		
Wind	1	Wind speed at reference height	m/s	-		
SWdown	1	Surface incident short wave	W/m ²	Downward		
		radiation				
LWdown	1	Surface incident long wave	W/m ²	Downward		
		radiation				
Qair	1	Specific humidity at reference	kg/kg	-		
		height				
PAR_in	2	Surface incident	mol/m ² /s	Downward		
		photosynthetically active				
		radiation				
CO2air	2	CO ₂ concentration at reference	ppmv	-		
		height				

(b): Energy and water budgets

Variable	priority	Definition	Units	Direction	status	Time
				(+)		step
SWup_total	1	Total outgoing short wave	W/m ²	Upward		
		radiation (total over				
		snow-free and snow-covered				
		canopy, snow-free and				
		snow-covered ground)				
LWup_total	1	Total outgoing long wave	W/m ²	Upward		
		radiation (same as				
		SWup_total)				
Qh_total	1	Total sensible heat flux (same	W/m ²	Upward		
		as SWup_total)				
Qle_total	1	Total latent heat flux (same as	W/m ²	Upward		
		SWup_total)				

Qg_total	1	Total ground heat flux (total	W/m ²	Downward	
		over snow-free and			
		snow-covered ground)			
ET_total	1	Total evapotranspiration (i.e.,	kg/m ² /s	Upward	
		Et_veg + E_soil + Ei +			
		Ei_snw)			
Qs	1	Surface runoff	kg/m ² /s	-	
Qsb	1	Subsurface runoff	kg/m ² /s	-	
alpha_sw	1	Total shortwave albedo	-	-	
Et_veg	1	Total transpiration of	kg/m ² /s	Upward	
		vegetation (e.g. forest			
		transpiration + forest floor			
		transpiration)			
E_soil	1	Soil evaporation from	kg/m ² /s	Upward	
		snow-free ground			
Ei	2	Canopy interception	kg/m ² /s	Upward	
		evaporation on snow-free			
		canopy			
Ei_snw	2	Canopy interception	kg/m ² /s	Upward	
		evaporation on snow-covered			
		canopy			
Sub_snow	1	Sublimation from the ground	kg/m ² /s	Upward	
		snow pack			
SWup_can	2	Outgoing short wave	W/m ²	Upward	
		radiation on snow-free			
		canopy			
LWup_can	2	Outgoing long wave radiation	W/m ²	Upward	
		on snow-free canopy			
Qh_can	2	Sensible heat flux on	W/m ²	Upward	
		snow-free canopy			
Qle_can	2	Total latent heat flux on	W/m ²	Upward	
		snow-free canopy			
SWup_gnd	2	Outgoing short wave	W/m ²	Upward	
		radiation on snow-free			
		ground			
LWup_gnd	2	Outgoing long wave radiation	W/m ²	Upward	

		on snow-free ground			
Qh_gnd	2	Sensible heat flux on	W/m ²	Upward	
		snow-free ground			
Qle_gnd	2	Total latent heat flux on	W/m ²	Upward	
		snow-free ground			
Qg_gnd	2	Total ground heat flux on	W/m ²	Downward	
		snow-free ground			
SWup_can_snw	2	Outgoing short wave	W/m ²	Upward	
		radiation on snow-covered			
		canopy			
LWup_can_snw	2	Outgoing long wave radiation	W/m ²	Upward	
		on snow-covered canopy			
Qh_can_snw	2	Sensible heat flux on	W/m ²	Upward	
		snow-covered canopy			
Qle_can_snw	2	Total latent heat flux on	W/m ²	Upward	
		snow-covered canopy			
SWup_snw	2	Outgoing short wave	W/m ²	Upward	
		radiation on snow-covered			
		ground			
LWup_snw	2	Outgoing long wave radiation	W/m ²	Upward	
		on snow-covered ground			
Qh_snw	2	Sensible heat flux on	W/m ²	Upward	
		snow-covered ground			
Qle_snw	2	Total latent heat flux on	W/m ²	Upward	
		snow-covered ground			
Qg_snw	2	Total ground heat flux on	W/m ²	Downward	
		snow-covered ground			
fPAR	2	Absorbed fraction incoming	-	-	
		PAR on canopy			

(c): Snowpack

Variable	priority	Definition	Units	Direction	status	Time
				(+)		step
SnowT_layer	1	Snow temperature at surface	К	-		
		and in each user-defined				
		snow layer (m)				

SWE	1	Total snow water equivalent	kg/m ²	-	
SnowDepth	1	Total snow depth	m	-	
Rho_sn_bulk	1	Bulk density of snow	kg/m ³	-	
Rho_sn_layer	1	Density of snow in each	kg/m ³	-	
		user-defined snow layer (m)			
Wsn_liq_layer	1	Liquid water content of	kg/m ²	-	
		snow in each user-defined			
		snow layer (m)			
Alpha_sn	1	albedo of snow	-	-	
Ksn_layer	1	thermal conductivity of	W/m/K	-	
		snow in each user-defined			
		snow layer (m)			
Fcompact_sn	2	Compaction rate of snow	kg/s•m ³	-	
		(snow density change due			
		to compaction)			
SIF	2	Snow impurity factor (which	-	-	
		expresses the effects of			
		black carbon and mineral			
		dust as a single parameter:			
		composite mass absorption			
		cross sections of snow			
		impurities per unit snow			
		mass)			

(d): Vegetation/ Phenology

Variable	priority	Definition	Units	Direction	status	Time
				(+)		step
AvgSurfT	1	Average of all	Κ	-		
		vegetation, bare soil and				
		snow skin temperatures				
VegT_layer	1	Vegetation canopy	Κ	-		
		temperature in				
		user-defined canopy				
		layer (m)				
W_can_liquid_ <i>layer</i> ,	2	Canopy water in	kg/m ²	-		
W_can_solid_ <i>layer</i> ,		user-defined canopy				

W_can_total_ <i>layer</i>		layer in the liquid and			
		solid phases			
LAI_total	1	Total leaf area index	m^2/m^2	-	
LAI_up_can	1	Leaf area index of upper	m^2/m^2	-	
		canopy			
LAI_forest_floor	1	Leaf area index of forest	m^2/m^2		
		floor			
Ce, Ch, Cd	1	Exchange coefficient of	-	-	
		leaf (vapor, heat,			
		momentum)			
r_a	1	Aerodynamic resistance	s/m		
		between canopy air			
		space and reference			
		height			
VgH	1	Vegetation height	m	-	
VgB	1	Canopy base height	m	-	
Root_frac_layer	1	Root fraction in each	-	-	
		user-defined soil layer			
		(The cumulative root			
		fraction from the surface			
		to the bottom depth with			
		root in the soil should be			
		1.0)			
Alpha_leaf	2	Leaf albedo (VIS, NIR)	-	-	
T_leaf	2	Leaf transmissivity	-	-	
		(VIS, NIR)			
VC	2	Vegetation coverage	-	-	
gc	2	Canopy conductance	m/s	-	
fBurn	3	Burnt area fraction	-	-	
fPFT	3	Fraction of plant	-	-	
		functional types (PFT)			
		or dominant PFT, which			
		is based on the			
		classification in each			
		model (e.g. high latitude			
		deciduous forest and			

	woodland, tundra)		

Variable	priority	Definition	Units	Direction	status	Time
				(+)		step
Tg_depth	1	Ground temperature at	К	-		
		surface and in each				
		user-defined soil layer				
		(m)				
Wg_depth	1	Volumetric soil water	m ³ /m ³	-		
		content including the				
		liquid, vapor and solid				
		phases of water in each				
		user-defined soil layer				
		(m)				
Wg_frac_depth	1	Fraction of saturation of	-	-		
		soil water content in each				
		user-defined soil layer				
		(m) (wilting=0,				
		saturation=1)				
Wg_frozfrac_depth	1	Fraction of soil moisture	-			
		mass in the solid phase in				
		each user-defined soil				
		layer (m)				
kg_depth	1	Soil thermal conductivity	J/K/m/s			
		in each user-defined soil				
		layer (m)				
Cg_depth	1	Soil heat capacity in each	J/K/m ³			
		user-defined soil layer				
		(m)				
Theta_s_depth	1	Porosity of soil in each	-			
		user-defined soil layer				
		(m)				
K_s_depth	1	Saturation hydraulic	m/s			
		conductivity of soil in				
		each user-defined soil				

(e): Subsurface hydrological and thermal states

		layer (m)			
Psi_s_depth	1	Saturation matric	m		
		potential in each			
		user-defined soil layer			
		(m)			
b, n, alpha_ <i>depth</i>	1	Empirical factor for soil	-		
		retention curve in each			
		user-defined soil layer			
		(m)			

(f): Carbon budget

Variable	priority	Definition	Units	Direction(+)	stat	Time
					us	step
GPP	1	Gross Primary Production on	kgC/m ² /s	Downward		
		land				
NPP	1	Net Primary Production on	kgC/m ² /s	Downward		
		land (=GPP – Ra)				
Ra	1	Autotrophic (plant)	kgC/m ² /s	Upward		
		respiration on land				
Rh	1	Heterotrophic Respiration on	kgC/m ² /s	Upward		
		land				
TotCarLitSoil	1	Total soil organic carbon	kgC/m ²	-		
NEP	1	Net ecosystem productivity	kgC/m ² /s	Downward		
		(=NPP - Rh)				
Pmax or	1	Maximum photosynthesis	mol/m ² /s	-		
Vcmax		rate or maximum rate of				
		Rubisco carboxylase activity				
Q10	1	Temperature sensitivity in	-	-		
		soil respiration				
NBP	2	Net Biome production	kgC/m ² /s	Downward		
		(=NEP - other efflux from				
		the land by natural or				
		anthropogenic disturbances)				
cLeaf	2	Carbon mass in leaves	kgC/m ²	-		
cStemCRoot	2	Carbon mass in stems and	kgC/m ²	-		
		coarse roots				

cFRoot	2	Carbon mass in fine roots	kgC/m ²	-	
cOtherLiving	2	Carbon mass in other living	kgC/m ²	-	
		compartments			
cLitter	2	Carbon mass in litter pool	kgC/m ²	-	
cSoilMineral	2	Carbon mass in soil mineral	kgC/m ²	-	
cOtherDead	2	Carbon mass in other forms	kgC/m ²	-	
CO2fire	3	CO2 emission from fire	kgC/m ² /s	Upward	
Carbon_alloc	3	Carbon allocation ratio to	-	-	
		each organ of vegetation			
		(leaf, stem and root)			
М	3	Mortality/Senescence ratio	-	-	
		(ratio of mortality and			
		senescence of each organ			
		(leaf, stem and root) per unit			
		time)			

The template file for output submission is provided through ADS. The file naming convention for submitting the result of each model is defined as follows.

[Model-ID]_[stage-ID]_[forcing ID]_[station-ID]_[yymmdd (date of submission)].csv,

where stage_ID is either "1a" or "1b", forcing_ID is "L0", "L1" or "L1H", and station_ID is shown in Table 4.

Table 4: File naming convention for submitting the result of each model

Model-name	Model-ID	Stage-na	Stage-	Forcing-	Forcing-	Station-nam	Station
		me	ID	data set	ID	е	-ID
2LM	2LM	Stage	1.0A	Level 0.2	Lv0.2	Fairbanks	FB
		1.0A					
FROST	FROST	Stage	1.0B	Level 1.0	Lv1.0	Kevo	KV
		1.0B					
SMAP	SMAP					Tiksi	TK
SNOWPACK	SNOWPACK					Yakutsk	YK
HAL	HAL					Chokurdakh	СН
MATSIRO-	MATsnow					Tura	TR
ssnowd							
MATSIRO-	MAT4						

Model name is for current participating model.

MIROC4				
MATSIRO-	MATpf	 	 	
Permafrost				
MATSIRO-	MAT5	 	 	
MIROC5				
SPAC-	SPAC	 	 	
multilayer				
LPJ	LPJ	 	 	
BEAMS	BEAMS	 	 	
PB-SDM	PBSDM	 	 	
STEM1	STEM1	 	 	
VISIT	VISIT	 	 	
CHANGE	CHANGE	 	 	
SEIB-DGVM-	SEIB-M	 	 	
MIROC				
SEIB-DGVM-	SEIB-N	 	 	
Noah				
JULES	JULES	 	 	
Biome-BGC	B-BGC	 	 	

To identify the characteristics of the model, we would like to ask the participants to answer the questionnaire provided through ADS.

2.8. Metrics

We proposed the scoring metrics shown in Table 5 to evaluate the terrestrial model performance in pan-Arctic region. The metrics are divided into five categories (energy and water budget, snowpack, phenology, subsurface hydrological and thermal states, carbon budget). These metrics are closely related to the processes of snowpack, frozen soil and biogeochemical processes in cryosphere.

Table 5: The lists of metrics for model performance evaluation

Variable	Definition	Units	Direction (+)	Time step
Rn_season,	Seasonally and annually averaged net	W/m ²	Downward	seasonal
Rn_annual	radiation			annual
Qh_season,	Seasonally and annually averaged	W/m ²	Upward	seasonal
Qh_annual	sensible heat flux			annual

(a): Energy and water budget

Qle_season,	Seasonally and annually averaged	W/m ²	Upward	seasonal
Qle_annual	latent heat flux			annual
ET_season,	Seasonally and annually averaged total	mm/day	Upward	seasonal
ET_annual	evapotranspiration			annual
Qs_season,	Seasonally and annually averaged	mm/day	Out of soil	seasonal
Qs_annual	surface runoff		column	annual
Qsb_season,	Seasonally and annually averaged	mm/day	Out of soil	seasonal
Qsb_annual	subsurface runoff		column	annual
Et_veg_season,	Seasonally and annually averaged	mm/day	Upward	seasonal
Et_veg_annual	transpiration of vegetation			annual
E_soil_season,	Seasonally and annually averaged soil	mm/day	Upward	seasonal
E_soil_annual	evaporation			annual
Wg_frac_season	Seasonally and annually averaged	-	-	seasonal
Wg_frac_annual	fraction of saturation of soil water			annual
	content (wilting=0, saturation=1)			
deltaWg_season,	Seasonally and annually averaged	mm/day	-	seasonal
deltaWg_annual	change of stored soil moisture			annual
alpha_season,	Seasonally and annually averaged	-	-	seasonal
alpha_annual	shortwave albedo			annual
E_can_season,	Seasonally and annually averaged	mm/day	Upward	seasonal
E_can_annual	canopy interception evaporation			annual

(b): Snowpack

Variable	Definition	Units	Direction (+)	Time step
SWE_max	Annual maximum snow water	kg/m ²	-	annual
Date_SWE_max	equivalent and the date reached	day		
SnD_max	Annual maximum snow depth and	m	-	annual
Date_SnD_max	the date reached	day		
SnowDuration	Annual duration of snow cover and	day	-	annual
Date_start_snow_	the date of snow cover start/end			
cover				
Sub_snow_season,	Seasonally and annually averaged	mm/day	Upward	annual
Sub_snow_annual	total sublimation from the ground			
	snow pack			

(c): Phenology

Variable	Definition	Units	Direction (+)	Time step
LAI_max	Annual maximum leaf area index	m^2/m^2	-	annual
GlowSeasonLentgh	Growing season length and the date	day	-	annual
	of start/end of growing season			

(d): Subsurface hydrological and thermal states

Variable	Definition	Units	Direction (+)	Time step
ALT or	Active layer thickness (permafrost	m	-	annual
ThawDepth_max	region) or annual maximum			
	thawing depth (seasonal frozen			
	ground) and the date reached			
FrozenDepth_max	Annual maximum frozen depth and	m	-	annual
	the date reached			
Tg_range_ <i>depth</i>	Annual range of soil temperature in	K	-	annual
	pre-defined soil layer			
Wg_frozfrac_max_	Annual maximum fraction of soil	-	-	annual
depth	moisture mass in the solid phase in			
	pre-defined soil layer			

(e): Carbon budget

Variable	Definition	Units	Direction	Time
			(+)	step
NPP_annual,	Annual and growing	kgC/m ² /year	Downward	annual
NPP_growing	season net primary	kgC/ m ² /duration		growing
	production on land			season
GPP_annual,	Annual and growing	kgC/m ² /year	Downward	annual
GPP_growing	season gross primary	kgC/ m²/duration		growing
	production			season
Rh_annual	Annual and growing	kgC/m ² /year	Upward	annual
Rh_growing	season heterotrophic	kgC/ m²/duration		growing
	respiration on land			season
Ra_annual	Annual and growing	kgC/m ² /year	Upward	annual
Ra_growing	season autotrophic (plant)	kgC/ m ² /duration		growing
	respiration on land			season
Re_annual	Annual and growing	kgC/m ² /year	Upward	Annual
Re_growing	season ecosystem	kgC/ m²/duration		growing

	respiration on land			season
NEP_annual	Annual and growing	kgC/m ² /year	Downward	Annual
NEP_growing	season net ecosystem	kgC/ m²/duration		growing
	productivity (=NPP-Rh) on			season
	land			
cLeaf_annual	Stored carbon mass in	kgC/m ²	-	annual
	leaves			
cStemCRoot_annual	Stored carbon mass in	kgC/m ²	-	annual
	stems and coarse roots			
cFRoot_annual	Stored carbon mass in fine	kgC/m ²	-	annual
	roots			
cOtherLiving_annual	Stored carbon mass in	kgC/m ²	-	annual
	other living compartments			
cLitter_annual	Stored carbon mass in litter	gC/m ²	-	annual
	pool			
cSoilMineral_annual	Stored carbon mass in soil	gC/m ²	-	annual
	mineral			

References

- Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, et al., 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeor., 4,1147-1167.
- Brown, R. D., and Robinson, D. A., 2011: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere, 5, 219–229.
- Brutel-Vuilmet, C., M. Menegoz and G. Krinner, 2013: An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. Cryosphere, 7, 67–80.
- Cramer, W., Kicklighter, D. W., Bondeau, A. Moore, B., Churkina, G., Nemry, B., Ruimy, A., Schloss, A. L., and the participants of the Potsdam NPP model intercomparison, 1999: Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global change biol., 5 (S1), 1–15.
- Dee, D.P., S. M. Uppalaa, A. J. Simmonsa et al., 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc. 137: 553–597
- Ekici A., Chadburn, S., Chaudhary, N., Hajdu, L. H., Marmy, A., Peng, S., Boike, J., Burke, E., Friend, A. D., Hauck, C., Krinner, G., Langer, M., Miller, P. A., and Beer, C., 2014: Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and

barren landscapes, The Cryosphere Discuss., 8, 4959–5013, www.the-cryosphere-discuss.net/8/4959/2014/, doi:10.5194/tcd-8-4959-2014.

- Etchevers, P., E. Martin, R. Brown, et al., 2004: Validation of the surface energy budget simulated by several snow models. Ann. Glaciol., 38, 150–158.
- Essery, R., N. Rutter, J. Pomeroy, et al., 2009: SnowMIP2: An evaluation of forest snow process simulations. Bull. Amer. Meteor. Soc., 90, 1120–1135, doi:10.1175/2009BAMS2629.1
- Friedlingstein, P., P. Cox, R. Betts, et al. 2006: Climate–Carbon Cycle Feedback Analysis: Results from the C 4 MIP Model Intercomparison. J. Clim., 19, 3337–3353.
- Harris, I., P.D. Jones, T.J. Osborn, and D.H. Listera, 2014: Updated high-resolution grids of monthly climatic observations the CRU TS3.10 Dataset, Int. J. Climatology, 34: 623–642
- Henderson-Sellers, A., Z. L. Yang, and R. E. Dickinson, 1993: The Project for Intercomparison of Land Surface Schemes (PILPS), Bull. Amer. Meteor. Soc., 74, 1335–1349.
- Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F., and Zhu, Q., 2013: The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project Part 1: Overview and experimental design, Geosci. Model Dev., 6, 2121–2133, doi:10.5194/gmd-6-2121-2013.
- Iwahana, G., S. Takano, R. E. Petrov, et al., 2014: Geocryological characteristics of the upper permafrost in a tundraforest transition of the Indigirka River Valley, Russia, Polar Science, http://dx.doi.org/10.1016/j.polar.2014.01.005
- Kodama, N. Sato, H. Yabuki, Y. Ishii, M. Nomura, T. Ohata, 2007: Wind direction dependency of water and energy fluxes and synoptic conditions over a tundra near Tiksi, Siberia, Hydrological Processes, 21, 2028-2037.
- Kotani,A., A. V. Kononov, T. Ohta, T. C. Maximov, 2013: Temporal variations in the linkage between the net ecosystem exchange of water vapour and CO2 over boreal forests in eastern Siberia, Ecohydrology, DOI: 10.1002/eco.1449
- Koven, C. D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C.Tarnocai, 2011: Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci.USA, 108, 14 769–14 774, doi:10.1073/pnas.1103910108.
- Koven, C. D., W. J. Riley, and A. Stern, 2013: Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim., 26, 1877–1900.
- Lopez ML, Saito H, Kobayashi K, Shirota T, Iwahana G, Maximov TC, Fukuda M. 2007. Interannual environmental-soil thawing rate variation and its control on transpiration from Larix cajanderi, Central Yakutia, Eastern Siberia. Journal of Hydrology 338: 251–260. DOI: 10.1016/j. jhydrol.2007.02.039

- Nakai, Y., Matsuura, Y., Kajimoto, T., Abaimov, A.P., Yamamoto, S., Zyryanova, O.A., 2008. Eddy covariance CO₂ flux above a Gmelin larch forest in continuous permafrost of central Siberia during a growing season. Theor. Appl. Climatol. 93, 133e147. http://dx.doi.org/10.1007/s00704-007-0337-x.
- Nakai, T., Y. Kim, R. C. Busey, R. Suzuki, S. Nagai, H. Kobayashi, H. Park, K. Sugiura, A. Ito, 2013: Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska, Polar Science, 7, 136-148
- Ohta, T., T. Hiyama, H. Tanaka, T. Kuwada, T. C. Maximov, T. Ohata, Y. Fukushima, 2001: Seasonal variation in the energy and water exchanges above and below alarch forest in Eastern Siberia. Hydrol. Process. 15, 1459–1476.
- Ohta, T., T. C. Maximov, A. J. Dolman, T. Nakai, M. K. van der Molen, A. V. Kononov, A. P. Maximov, T. Hiyama, Y. Iijima, E. J. Moors, H. Tanaka, T. Toba, H. Yabuki, 2008: Interannual variation of water balance and summer evapotranspiration inan Eastern Siberian larch forest over a 7-year period (1998–2006). Agric. ForestMeteorol. 148, 1941–1953.
- Ohta, T., A. Kotani, Y. Iijima, T. C. Maximov, S. Ito, M. Hanamuraa, A. V. Kononov, A. P. Maximov, 2014: Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998–2011, Agricultural and Forest Meteorology, 188, 64-75.
- Rawlins, M. A., McGuire, A. D., J. K. Kimball, P. Dass, D. Lawrence, E. Burke, X. Chen, C. Delire, C. Koven, A. MacDougall, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, P. Ciais, B. Decharme, I. Gouttevin, T. Hajima, D. Ji1, G. Krinner, D. P. Lettenmaier, P. Miller, J. C. Moore, B. Smith, and T. Sueyoshi, 2015: Assessment of model estimates of land–atmosphere CO2 exchange across Northern Eurasia, Biogeosciences Discuss., 12, 2257–2305, doi:10.5194/bgd-12-2257-2015.
- Saito, K. Miyazaki,S., Mori, J., Ise, T., Arakida, H., Sueyoshi, T., Hajima, T., Iijima, Y., Yamazaki, T., Sugimoto, A., , 2014a:GTMIP meteorological driving dataset for the GRENE-TEA observation sites (level 0.2), 0.20, Arctic Data archive System (ADS), Japan, https://ads.nipr.ac.jp/dataset/A20141009-005.
- Saito,K., Miyazaki, S., Mori, J., Ise, T., Arakida, H., Suzuki, R., Sato, A., Iijima, Y., Yabuki, H., Iijima, Y., Sueyoshi, T., Hajima, T., Sato, H., Yamazaki, T., Sugimoto,A., 2014b: GTMIP meteorological driving dataset for the GRENE-TEA observation sites (level 1.0), 1.00, Arctic Data archive System (ADS), Japan, https://ads.nipr.ac.jp/dataset/A20141009-006
- Saito, K., Sasai, T., Miyazaki, S., Mori, J., Ise, T., Arakida, H., Sueyoshi, T., Hajima, T., Iijima, Y., Yamazaki, T., Sugimoto, A., 2014c: GTMIP fraction of photosynthetically active radiation (fPAR) and leaf area index (LAI) for the GRENE-TEA observation sites (level 1.0), 1.00, Arctic Data archive System (ADS), Japan, https://ads.nipr.ac.jp/dataset/A20141009-007

Saito, K., Miyazaki, S., Mori, J., Ise, T., Arakida, H., Suzuki, R., Sato, A., Iijima, Y., Yabuki, H.,

Iijima, Y., Sueyoshi, T., Hajima, T., Sato, H., Yamazaki, T., Sugimoto, A., 2015: GTMIP meteorological driving dataset for the GRENE-TEA observation sites (detrended), 1.00, Arctic Data archive System (ADS), Japan, https://ads.nipr.ac.jp/dataset/A20150205-001

- Sasai, T., N. Saigusa, K.N. Nasahara, A. Ito, H. Hashimoto, R.R. Nemani, R. Hirata, K. Ichii, K. Takagi, T.M. Saitoh, T. Ohta, K. Murakami, Y. Yamaguchi, T. Oikawa, 2011: Satellite-driven estimation of terrestrial carbon flux over Far East Asia with 1-km grid resolution, Remote Sensing of Environment, 115, 7, 1758-1771, doi:10.1016/j.rse.2011.03.007..
- Sato, A., H. Kubota, M. Matsuda, K. Sugiura, 2001: Seasonal Variation of Heat Exchange in the Boreal Forest of Finnish Lapland, Second Wadati Conference, on Global Change and the Polar Climate, extended abstracts, 228-230.
- Slater, A. G., and D. M. Lawrence, 2013: Diagnosing present and future permafrost from climate models. J. Clim., doi:10.1175/JCLI-D-12-00341.1.
- Sueyoshi, T., et al., : GTMIP driving data sets, Earth System Science Data Discussion, to be submitted
- Takata, K., 2002: Sensitivity of land surface processes to frozen soil permeability and surface water storage, Hydrological Processes, 16, 2155-2172.
- Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.
- Watanabe K, M. Mizoguchi, H. Kiyosawa, Y. Kodama Y., 2000: Properties and horizons of active layer soils in tundra at Tiksi, Siberia. Journal of Japan Society of Hydrology and Water Resources 13(1): 9–16, (in Japanese with English abstract).
- Zhang, T. J., et al., 2005: Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J. Geophys. Res. Atmos., 110, D16101.